Non-ideal op-amp properties
Review: Op-amp golden rules

The op-amp golden rules were:
1). No input current, $I_+ = 0$ and $I_- = 0$, i.e., $X_{in} = \infty$
2). $V_- = V_+$ with negative feedback
 Or, output is enormous gain differential amp

This simple view allowed analyzing many op-amp circuits, but it is only a first approximation.

Now we’ll see some of the corrections, or limitations of this model and how to mitigate them.
Rail-to-rail

What is the output of this circuit?
Rail-to-rail

What is the output of this circuit? And this one?

\[V_{DD} \]

\[V_{SS} \]
Rail-to-rail

What is the output of this circuit? And this one?

The golden answers are V_{DD} and V_{SS}.
The “non-ideal” answers are \textit{a bit below} V_{DD} and \textit{a bit above} V_{SS}.
Real op-amps can’t go all the way to the power supply rails.
Rail-to-rail

Real op-amps can’t go all the way to the power supply rails. E.g., here is a simplified schematic of the KA358; note the output stage.
Slew rate

What is the output of this circuit?
Slew rate

What is the output of this circuit?

The output has a maximum “slew rate” that is ~ linear.

KA358 slew rate is ~0.15 V/µs. Fast amps can reach > 1000 V/µs.

This limits speed, particularly for large V_{DD}.
Slew rate

What is the output of this circuit?

The output has a maximum “slew rate” that is \(\sim \) linear.

KA358 slew rate is \(\sim 0.15 \) V/\(\mu \)s.
Fast amps can reach \(> 1000 \) V/\(\mu \)s.

This limits speed, particularly for large \(V_{DD} \).

Also can have a propagation delay.
Roll off of open-loop gain

The gain degrades at high frequency.

Datasheet often specifies the “gain bandwidth product” which is frequency (aka bandwidth) at which open-loop gain falls to one.
Roll off of open-loop gain

The gain degrades at high frequency.

Datasheet often specifies the “gain bandwidth product” which is frequency (aka bandwidth) at which open-loop gain falls to one.

Roll off is often intentional to avoid oscillation at high frequency due to parasitic positive feedback.

![Gain vs Frequency Graph for KA358 Op-Amp](attachment:KA358_gain_graph.png)
Roll off of open-loop gain

The gain degrades at high frequency
(This op-amp has lower supply limits, 5V not 15V)

THS4304
$6 op-amp
Input offset

What is the output of this circuit?
Input offset

What is the output of this circuit? Nearly V_{DD} or V_{SS}. Which one it will be is set by "input offset voltage".
Input offset

What is the output of this circuit?
Nearly V_{DD} or V_{SS}. Which one it will be is set by "input offset voltage".

Typically $V_{ios} \approx 1 \text{ mV}$
Input offset

Typically $V_{ios} \approx 1 \text{ mV}$
Input offset current

What is the output of this circuit?
What is the output of this circuit?

The output “follows” the voltage across the capacitor.

Golden rules say \(I_+ = 0 \) so capacitor maintains same charge.
Input offset current

What is the output of this circuit?
The output “follows” the voltage across the capacitor.
Golden rules say $I_+ = 0$ so capacitor maintains same charge.

There is a small leakage current, typically 10’s of pA to 10’s of nA.

This limits stability time for integrators or S&H.
Input offset current

What is the output of this circuit?
The output “follows” the voltage across the capacitor.
Golden rules say $I_+ = 0$ so capacitor maintains same charge.

There is a small leakage current, typically 10’s of pA to 10’s of nA. Most often I_{OS} is much smaller than I_B.

This limits stability time for integrators or S&H.
Input offset current

This biases an inverting amplifier with large resistors. Want R_1 large for input impedance, but I_B*R is a voltage offset.

$10 \text{ nA} \times 1\text{M} = 10\text{mV}$. Then gain of 10 gives an output bias of 100 mV.
Input offset current

This biases an inverting amplifier with large resistors. Want R_1 large for input impedance, but I_B*R is a voltage offset.

10 nA*1M = 10mV. Then gain of 10 gives an output bias of 100 mV. Solution is to give the other input the same voltage offset; works if I_{OS} small compared to I_B.
Input offset current

Similar solution works for non-inverting amplifiers.
Input offset current

Similar solution works for non-inverting amplifiers.
Input offset current

Similar solution works for non-inverting amplifiers.

But, again, it is best not to amplify the DC offsets.
Noise

There is intrinsic noise in the inputs.

Typically 10 nV/$\sqrt{\text{Hz}}$ and 1 pA/$\sqrt{\text{Hz}}$

Really only critical for precision measurements, and we will talk about ways to suppress it next week.
Pick your optimum

There are thousands of op-amp designs. They optimize on various parameters:

Rail-to-rail
Power supply range
Power consumption
Speed
 - GBP, Slew-rate
Input bias current
Input offset current
Input offset voltage
Flexibility
 - Multi-circuits
 - Offset-null
Package
Operating temperature range
Price
 - Often dominated by batch size.
Pick your optimum

There are thousands of op-amp designs. They optimize on various parameters:

- Rail-to-rail
- Power supply range
- Power consumption
- Speed
 - GBP, Slew-rate
- Input bias current
- Input offset current
- Input offset voltage
- Flexibility
 - Multi-circuits
 - Offset-null
- Package
- Operating temperature range
- Price
 - Often dominated by batch size.

Electronics component vendors:
- Newark
- Digikey
- Arrow
Lab 9 and extra credit projects

Lab 9 will be a grab-bag of options

No lab 10 during dead week.
That time available for extra credit project work.

Extra credit projects due (ELOG complete) Sunday, June 13th at noon.
Email me when you have completed it.
What is wrong with this circuit?
What is wrong with this circuit?
\[V_{in} \rightarrow 1\mu F \rightarrow 50k \rightarrow 100k \rightarrow +15\, V \rightarrow \text{Op Amp} \rightarrow - \rightarrow 10k \rightarrow 2k \rightarrow 1\mu F \rightarrow \text{Ground} \rightarrow V_{out} \]